Land Cover Classification for Polarimetric SAR Images Based on Mixture Models

نویسندگان

  • Wei Gao
  • Jian Yang
  • Wenting Ma
چکیده

In this paper, two mixture models are proposed for modeling heterogeneous regions in single-look and multi-look polarimetric SAR images, along with their corresponding maximum likelihood classifiers for land cover classification. The classical Gaussian and Wishart models are suitable for modeling scattering vectors and covariance matrices from homogeneous regions, while their performance deteriorates for regions that are heterogeneous. By comparison, the proposed mixture models reduce the modeling error by expressing the data distribution as a weighted sum of multiple component distributions. For single-look and multi-look polarimetric SAR data, complex Gaussian and complex Wishart components are adopted, respectively. Model parameters are determined by employing the expectation-maximization (EM) algorithm. Two maximum likelihood classifiers are then constructed based on the proposed mixture models. These classifiers are assessed using polarimetric SAR images from the RADARSAT-2 sensor of the Canadian Space Agency (CSA), the AIRSAR sensor of the Jet Propulsion Laboratory (JPL) and the EMISAR sensor of the Technical University of Denmark (DTU). Experiment results demonstrate that the new models fit heterogeneous regions preferably to the classical models and are especially appropriate for extremely heterogeneous regions, such as urban areas. The overall accuracy of land cover classification is also improved due to the more refined modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Land Cover Identification Using Polarimetric Sar Images

Synthetic Aperture Radar (SAR) has been proven to be a powerful earth observation tool. Due to its sensitivity to vegetation, its orientations and various land-covers, SAR polarimetry has the potential to become a principle mean for crop and land-cover classification. A variety of polarimetric classification algorithms have been proposed in the literature for segmentation and/or classification ...

متن کامل

Land Cover Classification Using E-sar Polarimetric Data

Different decomposition approaches have been proposed in order to analyse and interpret SAR polarimetric images. These are based either on the complex voltage reflection matrix, like Pauli, or on power reflection matrix, like the covariance or coherency matrix. They produce polarimetric parameters which are appropriate to retrieve information on the scattering process of the target. If the targ...

متن کامل

Classification of polarimetric radar images based on SVM and BGSA

Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...

متن کامل

Multitemporal Radarsat-2 Polarimetric Sar Data for Urban Land-cover Mapping

The objective of this research is to evaluate multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using a novel classification scheme. Six-date RADARSAT-2 Polarimetric SAR data in both ascending and descending orbits were acquired during June to September 2008 in the rural-urban fringe of the Greater Toronto Area. The major land-cover types are builtup areas, roa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014